
Image Segmentation with Gaussian Mixture Models:
A Hands-On Tutorial

Alex Hagiopol

Abstract—The expensive requirements of high-precision train-
ing data and large-scale computing resources for implementing
modern image segmentation approaches motivate a look back at
classical segmentation approaches. This article explains Gaussian
Mixture Models (GMMs), shows how to compute GMMs using
the Expectation Maximization (EM) algorithm, and shows how
to apply these two concepts to image segmentation in a fully
unsupervised and computationally tractable way. Implementation
techniques for achieving stability despite limited bit precision
are described, and image segmentation results obtained using
these techniques are provided. The accompanying open source
software1 is a reference implementation with visualization tools.

I. INTRODUCTION

Image segmentation is clustering or classification of image
pixel data. Segmentation may be used to infer semantic
meanings for image pixels or to compress the amount of
data required to convey the meaning of an image as shown
in Figure 1. State-of-the-art image segmentation techniques
such as [1], [3], and [2] are useful in volumetric performance
capture applications [4] [5], general 3D scene reconstruction
applications [7] [6], and autonomous driving applications [8].
Such segmentation techniques rely on large training data sets
such as [12] and [8] and the computational resources to train
neural networks with millions of parameters on many thou-
sands of examples. Furthermore, state-of-the-art segmentation
approaches also require that the data be accurately labeled
pixelwise to obtain accurate segmentation results as observed
explicitly by [13] and observable in the figures of [1] and
[3]. The need for pixelwise accurate segmentation results
is especially strong in volumetric reconstruction applications
such as [7] and [6] where incorrect segmentation results defeat
the purpose of producing photorealistic 3D models of scene
elements such as performers.

While neural networks have achieved state-of-the-art results
in image segmentation, the costs of precise data labeling and
network training computation motivate this study of alterna-
tive segmentation techniques. This article explores Gaussian
Mixture Models (GMM) and Expectation Maximization (EM),
the core components of classical image segmentation literature
such as [9], [10], and [11]. The mathematics of the techniques
are laid out, numerically stable software implementations are
presented, and the algorithm states are illustrated with image
segmentation results2.

1Software available at github.com/alexhagiopol/gmm.
2For practical segmentation pipelines useful in applications such as [5],

[4], [7], and [6] using GM and EMM, see [9], [10], and [11].

Figure 1. Example of an image segmentation. Top: Original grayscale image
with 8-bit pixel depth. Bottom: The top image segmented into 4 groups and
visualized with each original pixel value replaced by the mean value of its
assigned group. This segmentation yields a compressed grayscale image with
2-bit pixel depth - a 4X reduction in data size at the cost of image quality.

II. THEORY

The segmentation problem is cast as a problem of estimating
probabilistic models representing K image segments where
K is an application-dependent constant selected a priori3. K
is the number of the components in the mixture of models
representation. Each of K groups of pixels is represented using
a Gaussian model that represents the probability of each pixel
value belonging to that group. Once the state variables of each
probabilistic model are estimated, predicting to which model
each pixel belongs is equivalent to selecting the model with
the highest likelihood for that pixel value. This mixture of
Gaussian models used for predicting segment assignment is
the source of the name “Gaussian Mixture Models” and is
defined as

3K is determined from application parameters e.g. an image must be
segmented into background and foreground components yielding K=2 or an
image must be compressed to 2-bit pixel depth yielding K=4

P (x) =

k∑
i=1

P (C = i)P (x|C = i), (1)

where the Gaussian mixture distribution P over data points x
has k Gaussian distribution components represented by C.

The goal of the GMM framework is to estimate the highest
probability state variables - the scalar mean µk and scalar
standard deviation σk in the 1D case - of each of K Gaussian
models in the mixture as shown in Figure 2. Although images
are generally represented as 2D matrices, GMM is introduced
by representing an image as a container of many 1D pixel
values. Thus a 1 Megapixel image is a container of 1 million
8-bit scalar values in the range4 [0, 255]. Since each pixel
is represented in 1D, estimating the parameters of GMMs is
thought of as estimating model probabilities over a 1D state
space.

We follow the theory set out by [14] and [15] and represent
the state variables of each Gaussian model for each pixel
group as unobservable hidden variables. If the problem is
cast in terms of only observable variables, the number of
parameters that must be estimated drastically increases. To
clarify the advantage of hidden variables, [14] provides the
example of diagnosing heart disease. Heart disease itself
is unobservable: only risk factors (e.g. smoking, diet, and
exercise) and symptoms (e.g. chest pain, shortness of breath,
and nausea) are observable. The unobservable presence of
the disease can therefore be inferred by reasoning about the
observable variables. If one were to attempt instead to estimate
the presence of the symptoms using only information about the
risk factors, the number of parameters to be estimated would
be much higher than the number of parameters in the system
with a hidden variable. The issue with using hidden variables
in representing the structure of the segmentation problem is
that it is not obvious how to estimate hidden variables because
their values cannot be directly observed.

To estimate the most likely values of hidden variables, the
EM algorithm is applied as summarized in [14] and in Chapter
9 of [15]. It is restated here in terms applicable to image
segmentation.

1) Initialization Step Assume an initialization for param-
eters mean µk and standard deviation σk of each of
K GMM component model. Initialize a mean µk, a
variance σ2

k, and a weight wk for each component k. A
textbook implementation calls for choosing from among
arbitrary initialization, initialization using randomly se-
lected pixel intensities present from the input dataset,
or initialization using another clustering algorithm such
as K-Means [15]. The choice of initialization strategy
is very application-specific and heavily impacts conver-
gence behavior. In the single-image segmentation mode
of the accompanying software, means µk are initialized
to evenly distributed values between 0 and 1. The

4Although image data is often stored with 8 bit pixel depth, for numerical
stability reasons, our implementation normalizes pixel values to vary between
floating point values 0.0 and 1.0. See Implementation section.

Figure 2. Example of intermediate results of Gaussian mixture models
estimation after 4 iterations of the Expectation Maximization algorithm. Given
the same original image from Figure 1, 4 Gaussian models (bottom) are fit
to the frequency distribution of pixel gray values (middle). The segmentation
image (top) is created by assigning to each pixel the value of the mean of
the Gaussian model whose probability is highest at that pixel’s value.

variances σ2 are initialized to arbitrary small fractions
such as 10

255 following from the maximum pixel intensity
representable by an 8 bit integer.

2) Expectation Step For each pixel value xn, compute the
responsibility γnk i.e. the probability that the nth pixel
belongs to the kth component divided by the sum of
the probabilities that the nth pixel belongs to all other
components. In the following equation, n is an individual
pixel index out of N total pixels, k is an individual
component index out of K total components, and N is

2

the Gaussian probability density function [16].

γnk =
wk ∗ N (xn, σk, µk)∑K

j=0

(
wj ∗ N (xn, σj , µj)

) (2)

In the case of 1D image processing, this equation is
executed once for each pixel in an image independently:
unlike the graph cut based global optimization technique
described in [9], the GMM technique does not consider
relationships among neighboring pixels through any
mechanism except the variables wk, µk, and σk which
are common among all pixels belonging to each k of K
total Gaussian component models.

While the previous equation is useful for under-
standing the EM algorithm, a direct computer program
implementation of the Expectation step as described thus
far suffers from numerical instability. Due to the limits
of representing an infinite real number space with finite
bit precision, a legal mathematical operation (dividing
by a very small number) is represented as an illegal
mathematical operation (dividing by zero) in a direct
computer program implementation. When the Expecta-
tion step estimates probabilities of pixel membership in
a model component that are vanishingly small (e.g. prob-
abilities for pixels that very certainly do not belong to a
given model component), the probabilities are often not
representable even by a 64-bit double precision floating
point number. In this case, the underflow phenomenon
causes these small probabilities to be approximated as
zero in machine memory which leads to division by zero.

To remedy the numerical stability problem, the funda-
mental properties of the ln() function and a derivation of
these properties called the LogSumExp [17] technique
are applied. During the Expectation step, small values
are converted into ln() space, manipulated mathemati-
cally in that space, then converted back into real number
space before the Maximization step is performed. The
reasoning for using ln() space is that in ln() space,
positive values extremely close to zero are mapped from
real number space to values far enough away from zero
that they are readily representable by double precision
floating point numbers in machine memory. Thus an
implementation of the Expectation step is created such
that the step is mathematically equivalent to what is
described in Equation 2, but does not require the use
of extremely small values in machine memory.

Since the Expectation step contains multiplication,
division, and series summation operations, ln() space
equivalents for these operations (ln(A ∗B), ln(AB), and
ln(
∑N

i=0 xi)) must be developed to adapt the Expecta-
tion step to ln() space. First, multiplication and division
operations must be expressed in ln() space using the
fundamental rules of logarithms:

ln(A ∗B) = ln(A) + ln(B) (3)

ln(
A

B
) = ln(A)− ln(B) (4)

Next, the summation of an arithmetic series must also be
expressed in ln() space by deriving an expression from
the definition of LogSumExp presented in [17]. In these
equations, xi is an element of an arithmetic series and
xmax is the maximum element of the arithmetic series
containing xi.

LSE(x0 : xn) = ln
(N∑

i=0

exi

)
(5)

LSE(x0 : xn) = xmax + ln
(N∑

i=0

exi−xmax

)
(6)

Modify both sides of Equation 6 to compute the LSE of
ln(x0) : ln(xn), and apply the rule of logarithms stating
that x = eln(x):

ln(

N∑
i=0

xi) = ln(xmax)+ln
(N∑

i=0

eln(xi)−ln(xmax)
)

(7)

Thus, the numerically stable expression for the respon-
sibilities calculated in ln() space during the Expectation
step, ln(γnk), is derived:

γnk =
wk ∗ N (xn, σk, µk)∑K

j=0

(
wj ∗ N (xn, σj , µj)

) (8)

Pnk = ln(wk) + ln
(
N (xn, σk, µk)

)
(9)

Pn max = argmaxk(Pn0...Pnk...PnK) (10)

ln(γnk) = ln(wk) + ln
(
N (xn, σk, µk)

)
−

(
Pn max + ln

(K∑
k=0

ePnk−Pn max

))
(11)

Once ln(γnk) is computed, it is exponentiated to yield
γnk which is then used to continue the EM steps that
follow.

3) Optional: Inference Step At this point in the algorithm,
an inference may be performed in which the component
k with the maximum probability for a given pixel is
selected as the model that gives rise to the value of that
pixel. One way to visualize this inference is to assign to
each pixel xn in the visualization the mean value µk of
the model k with the highest responsibility γnk for that
pixel as illustrated in Figure 1.

4) Maximization Step For each component model k, re-
fit and update the model parameters wk, µk, and σk
to the input dataset with each pixel value xn weighted
by the previously calculated responsibility γnk. The first
step in estimating the model parameters is to estimate

3

the number Nk of pixels most likely to belong to each
model k. 5

Nk =

N∑
n=1

γnk (12)

With Nk computed, the rest of the model parameters
follow:

µnew
k =

1

Nk

N∑
n=1

(γnk ∗ xn) (13)

σnew
k =

1

Nk

N∑
n=1

(
γnk ∗ (xn − µnew

k)2
)

(14)

wnew
k =

Nk

N
(15)

5) Optional: Log Likelihood Step At this point in the
algorithm, the log likelihood of the state of the algorithm
can be calculated as follows.

LogLikelihood =
N∑

n=1

(
ln
(K∑

k=1

(
wk ∗ N (xn, σk, µk)

)))
(16)

This calculation is used to indicate convergence of
the EM algorithm and as a debugging feature that
indicates an implementation error in the event that the
log likelihood decreases: it is provable [14] that the
Expectation Maximization algorithm can only increase
its log likelihood on every iteration.

6) Loop Step The new model parameters computed in the
maximization step can then be used in a new expectation
step and inference step. Thus, an iterative algorithm
emerges: repeat steps 2 through 5 until a terminating
condition is reached. The terminating condition of this
algorithm can be convergence of the log likelihood
(i.e. an increase of the log likelihood that is below a
threshold) or a fixed maximum number of Expectation
Maximization iterations.

III. IMPLEMENTATION

Python program implementations of the mathematical defi-
nitions of each step of the EM algorithm follow.

1) Initialization Step The Initialization step is dependent
on input such as tuning parameters and images from
disk.

5The number of pixels belonging to each model is an integral number,
and this equation can be implemented by casting the sum of floating point
γnk values into to an integer sum. However this choice may yield Nk

values of zero which would lead to zero division later in the procedure.
To increase the numerical stability of the implementation, γnk , Nk , and all
other variables should be represented as floating point numbers preferably
with double precision.

1 # 1. Initialization Step:
2 image = # N*N matrix from user input
3 components = # num. components from user input
4 iterations = # num. iterations from user input
5 means = np.linspace(0, 1, components)
6 variances = np.float64(np.ones(components)) *

np.float64(10 / 255)
7 stdevs = np.sqrt(variances)
8 weights = np.ones(components)
9 total_log_likelihoods = np.zeros(iterations)

10 rows, cols, chans = image.shape

2) Expectation Step The following is a direct implementa-
tion of the Expectation step presented only for clarifica-
tion: while it is instructive, it should not be relied upon
to produce accurate results due to numerical instability
issues discussed in the Theory section description of the
Expectation step.

1 # 2a. Expectation Step:
2 gammas = np.zeros((rows, cols, components))
3 denominator = np.zeros((rows, cols))
4 for k in range(components):
5 denominator = denominator + weights[k] *

sp.stats.norm.pdf(image, means[k],
stdevs[k])

6 gammas[:, :, k] = np.divide(weights[k] *
sp.stats.norm.pdf(image, means[k],
stdevs[k]), denominator)

7 for k in range(components):
8 gammas[:, :, k] = np.divide(weights[k] *

sp.stats.norm.pdf(image, means[k],
stdevs[k]), denominator)

The following is an implementation of the Expectation
step that lends itself to numerical stability.

1 # 2b. Numerically Stable Expectation Step:
2 # compute P matrix containing P_n_k values for

every n and every k
3 P = np.zeros((N, M, K))
4 for k in range(K):
5 P[:, :, k] = np.log(weights_list[k]) +

np.log(sp.stats.norm.pdf(intensities,
means_list[k], stdevs_list[k]))

6
7 # compute P_max matrix containing P_n_max

values for every n
8 P_max = np.max(P, axis=2)
9

10 # implement expsum calculation used to
calculate ln(gamma_n_k)

11 expsum = np.zeros((N, M))
12 for k in range(K):
13 expsum += np.exp(P[:, :, k] - P_max)
14
15 # implement responsibilities (gamma_n_k)

calculation for every n and every k
16 ln_responsibilities = np.zeros((N, M, K))
17 ln_expsum = np.log(expsum)
18 for k in range(K):
19 ln_responsibilities[:, :, k] = P[:, :, k] -

(P_max + ln_expsum)
20 responsibilities = np.exp(ln_responsibilities)

3) Optional: Inference Step The inference step can be
called (1) at every iteration for debugging, (2) only after
the final iteration for producing a results summary, or
(3) not at all in the case of production code that simply

4

passes on converged model parameters as part of a larger
image processing pipeline.

1 # 3. Inference Step:
2 rows, cols, components = gammas.shape
3 segmentation = np.zeros((rows, cols))
4 segmentation_idxs = gammas.argmax(axis=2)
5 for r in range(rows):
6 for c in range(cols):
7 segmentation[r, c] =

means[segmentation_idxs[r, c]]

4) Maximization Step The maximization step, if pre-
ceeded by a numerically stable Expectation step, does
not need modification to ensure numerical stability. Its
main role is to update algorithm state variables.

1 # 4. Maximization Step:
2 N_k = np.sum(np.sum(gammas, axis=0), axis=0)
3 for k in range(components):
4 means[k] = np.divide(

np.sum(np.sum(np.multiply(
gammas[:, :, k], image), axis=0),
axis=0), N_k[k])

5 diffs_from_mean = np.subtract(image,
means[k])

6 variances[k] = np.divide(
np.sum(np.sum(np.multiply(
gammas[:, :, k],
np.square(diffs_from_mean)), axis=0),
axis=0), N_k[k])

7 stdevs[k] = np.sqrt(variances[k])
8 weights[k] = np.divide(numPoints[k], (rows

* cols))

5) Optional: Log Likelihood Step The log likelihood
calculation is the same as the sum of the log of the
denominator of the equation implemented in the Expec-
tation step. The log likelihood step may be performed
on every iteration to measure convergence progress
or it may not be performed at all in the case of a
fixed-iteration EM implementation. This step re-uses the
procedures from the numerically stable implementation
of the Expectation step, specifically the computation of
Pnk, Pn max, and the expsum

∑K
k=0 e

Pnk−Pn max .

1 # 5. Log Likelihood Step:
2 # ... compute numerically stable expsum, P,

P_max as in step 2b.
3 expsum, P, P_max =

compute_expsum_stable(intensities,
weights_list, means_list, stdevs_list)

4 ln_inner_sum = P_max + np.log(expsum) # inner
sum of log likelihood equation

5 log_likelihood = np.sum(np.sum(ln_inner_sum,
axis=0), axis=0) # outer sum of log
likelihood equation

6) Loop Step The loop step is best implemented as a
for loop wrapped around the Expectation, Inference,
Maximization, and Log Likelihood steps as shown:

1 # 6. Loop Step:
2 # 1. Initialization Step ...
3 for i in range(iterations):
4 # 2. Expectation Step ...
5 # 3. Inference Step ...
6 # 4. Maximization Step ...
7 # 5. Log Likelihood Step ...

IV. RESULTS

Figure 3 illustrates the internal state of the Expectation
Maximization algorithm for the first six iterations of the
algorithm’s execution on the input image from Figure 1. Along
the top row of Figure 3 are visualizations of the optional
inference step (see Theory section) during each iteration. In
the inference visualizations, the original input image seen in
Figure 1 is segmented into 4 segments hence the presence of
4 different gray levels in the visualizations. The mixture of
4 different gray levels represents the mixture of 4 Gaussian
models that is computed by Expectation Maximization. The
inference visualizations change on each iteration of the algo-
rithm as the internal state of the Expectation Maximization
procedure (represented by the state variables σk, µk, wk

for each of K models) changes. Along the middle row are
histogram plots that show the number of occurrences for each
possible pixel value in the input image. These plots do not
change with the state of the algorithm because the input image
does not change; they are reproduced multiple times only for
comparison against the bottom row of Figure 3. The bottom
row of Figure 3 shows plots of the Gaussian curves yielded
by the algorithm state variables for each of the 4 component
models of the mixture. The evolution of the state of the
algorithm is most clearly visible in the changes in the Gaussian
curves at the bottom of Figure 3.

To summarize the evolution of the algorithm after a signifi-
cant number of iterations, Figure 4 shows the initial and final
mixture models over 15 iterations. Of interest is the leftmost
and darkest Gaussian curve that has evolved to closely repre-
sent the overwhelming number of black (i.e. 0-valued) pixels
in the histograms. After just 15 iterations, this Gaussian curve
represents a maximum responsibility 15 times greater than the
maximum responsibility represented by its initialization! This
illustrates the EM algorithm’s ability to produce a mixture
model that closely represents its input dataset.

To illustrate EM convergence behavior for an image seg-
mentation application, the bottom of Figure 5 shows segmen-
tation results for each iteration of the EM algorithm when ex-
ecuted using the normalized difference [18] of the two images
in the top of Figure 5 as input. The images in the top of Figure
5 are representative of a common segmentation scenario: after
capturing an empty scene (“background”) followed by an
action sequence (“background + foreground”), the goal is to
separate pixels belonging to the subject alone (“foreground”)
in a video sequence. Image pair subtraction alone generally
does not produce accurate results because of (1) the necessity
of manually specifying a subtraction threshold for input image
each pair and (2) non-foreground lighting and shadow effects
introduced by inserting an opaque foreground object into the
scene. The first segmentation result in the bottom of Figure 5
shows a poor background-foreground segmentation made with
an arbitrarily chosen subtraction threshold that is refined —
in a completely unsupervised way with no training! — by
the EM algorithm into the final segmentation result. The final
result - although by no means perfect and requiring further

5

Figure 3. Full algorithm state visualization of first 6 iterations of the numerically stable expectation maximization procedure.

Figure 4. Summary of EM algorithm evolution over 15 iterations. Responsi-
bility curves are colored with the mean of the Gaussian model they represent.
When the mean color is too light to visualize, a dotted line is used.

processing for practical uses as described by [9] — is (1)
clearly a more accurate representation of the segmentation
between the foreground and background than the initialization
and (2) arrived at after only 6 iterations of the EM algorithm.
Figure 6 illustrates the results of the EM algorithm applied to
segmentation of more image data.

The plot in Figure 7 shows the log likelihood values for
each iteration of the EM algorithm executed on the dataset
in Figure 5. From the plot it is inferred that convergence
starts to happen approximately after iteration 5. After this
point, the increase in the closeness of the Gaussian model fit
may not be worth the additional computation time. Choosing
the definition for convergence is an application-specific and
dataset-specific design decision: canonical approaches include
detect sub-threshold changes in log likelihood or specifying a

set number of iterations. As a final example of convergence
behavior, the EM algorithm is executed on the input data in
Figure 1 to produce the final segmentation result shown in
4. The drastic changes in the Gaussian responsibility curves
in the bottom third of 4 are apparent. Figure 3 shows the
evolution of the GMM state over a selection of iterations.
Visualizations such as those in Figures 3, 4, and 7 will aid
in designing a good convergence criterion for the specific
application and dataset at hand.

V. ACKNOWLEDGEMENTS

I thank Neal Grantham for his insightful guidance and
patience in reviewing this work.

REFERENCES

[1] L.C. Chen, G. Papandreou, I. Kokkinos, K. Murphy, and A. Yuille,
DeepLab: Semantic Image Segmentation with Deep Convolutional Nets,
Atrous Convolution, and Fully Connected CRFs, arXiv:1606.00915v2,
2017.

[2] H. Zhao, J. Shi, X. Qi, X. Wang, J. Jia, Pyramid Scene Parsing Network,
The IEEE Conference on Computer Vision and Pattern Recognition, 2017.

[3] K. He, G. Gkioxari, P. Dollar, R. Girshick, Mask R-CNN,
arXiv:1703.06870v3, 2017.

[4] A. Collet, M. Chuang, P. Sweeney, D. Gillett, D. Evseev, D. Calabrese, H.
Hoppe, A. Kirk, Steve Sullivan, High-Quality Streamable Free-Viewpoint
Video, ACM Transactions on Graphics, 2015.

[5] M. Dou, S. Khamis, Y. Degtyarev, P. Davidson, S. Fanello, A. Kowdle, S.
Escolano, C. Rhemann, D. Kim, J. Taylor, P. Kohli, V. Tankovich, and S.
Izadi, Fusion4D: Real-time Performance Capture of Challenging Scenes,
ACM Transactions on Graphics, 2016.

[6] W. Matusik, C. Buehler, R. Raskar, S. J. Gortler, L. McMillan, Image-
Based Visual Hulls, 2000.

[7] P. Song, X. Wu, M. Y. Wang, Volumetric Stereo and Silhouette Fusion
for Image-Based Modeling, 2010.

[8] M. Cordts, M. Omran, S. Ramos, T. Rehfeld, M. Enzweiler, R. Benenson,
U. Franke, S. Roth, and B. Schiele, The Cityscapes Dataset for Semantic
Urban Scene Understanding, The IEEE Conference on Computer Vision
and Pattern Recognition, 2016.

[9] C. Rother, V. Kolmogorov, A. Blake, GrabCut - Interactive Foreground
Extraction using Iterated Graph Cuts, ACM Transactions on Graphics,
2004.

[10] M. Tang, L. Gorelick, O. Veksler, and Y. Boykov, GrabCut in One Cut,
The IEEE International Conference on Computer Vision (ICCV), 2013.

6

Figure 5. Top: Image pair with background (left) and background plus
foreground (right). Bottom: Background-foreground segmentation results over
6 EM iterations.

[11] M. M. Cheng, V. Prisacariu, S. Zheng, P. Torr, and C. Rother, DenseCut:
Densely Connected CRFs for Realtime GrabCut, Computer Graphics
Forum - Eurographics, 2015.

[12] T.Y. Lin, M. Maire, S. Belongie, L. Bourdev, R. Girshick, J. Hays, P.
Perona, D. Ramanan, C. L. Zitnick, P. Dollar, Microsoft COCO: Common
Objects in Context, arXiv:1405.0312v3, 2015.

[13] Y. Aksoy, T.H. Oh, S. Paris, M. Pollefeys, W. Matusik, Semantic Soft
Segmentation, ACM Transactions on Graphics, 2018.

[14] S. Russel and P. Norvig, Artificial Intelligence: A Modern Approach,
Pearson Education, 2010.

[15] C. Bishop, Pattern Recognition and Machine Learning, Springer, 2011.
[16] Wikipedia contributors, Probability Density Function,

“https://en.wikipedia.org/wiki/Probability density function”,
accessed 12-Oct-2018.

[17] Wikipedia contributors, LogSumExp,
“https://en.wikipedia.org/wiki/LogSumExp”, accessed 12-Oct-2018.

[18] Wikipedia contributors, ColorDifference,
“https://en.wikipedia.org/wiki/Color difference”, accessed 12-Oct-2018.

Figure 6. Color images: Background-foreground image pairs. Binary
images: Corresponding segmentation results over 3 EM iterations.

Figure 7. Log likelihood plot of algorithm state during 10 iterations of the
EM algorithm executed on the dataset in Figure 5.

7

